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EXTENDED PINCUS THEOREMS AND CONVERGENCE

OF SIMULATED ANNEALING

Abstract

Pincus' 1968 formula for the (unique) global minimum of a continuous function on a

compact set in En is extended to finite multiple optima and to discrete and special

variants. The impact of these on associated ergodic irreducible aperiodic Markov chain

computation he initiated, (1970) currently called *simulated annealing", is exemplified

and assessed leading to grave concern about what current simulated annealing processes

may converge to instead of optima.

Access.on For

Keywords D'IC T7B
Unarnouncoed 5]

Extended Pincus Theorems Justtlicatio
Global Optimization
Simulated Annealing
Ergodic Markov Chains ByDistributionl/________

Availability Codes

aVlil and/or

Distp e c ial 4i0



EXTENDED PINCUS THEOREMS AND CONVERGENCE
OF SIMULATED ANNEALING

Introduction

In 1968, M. Pincus [1] derived a closed form expression for the (assumed) unique global

minimum point of a continuous function on a compact set S in En as the limit of the expected value

(vector) of a one parameter family of distributions based on the continuous function F(x). Since

these expressions involve integrations over irregular sets and in the many variables (of En), he

established in 1970 [2] an approximate computational method based on the Metropolis-Ulam, von

Neumann, et. al method [3] of associating an irreducible aperiodic Markov chain with the

approximations to Riemann integrals and using the strong law of large numbers for such chains to

generate an approximation to the unique global solution point. The relevance of this work to so-

called "simulated annealing" as introduced in 1983 by Kirkpatrick, Gelatt and Vecchi [4] was not

noticed by these authors since there is no mention of the Pincus work therein. Nor is there any

reference to it in current 1988 work of Hajek [5] or by Chiang and Chow [6].

The analytic sharpness of the Pincus type formula is therefore here extended to

situations of finite global optima, in several variants, thereby providing insight into what simulated

annealing or sample Markov chain computations may converge to, both for finite discrete

optimization problems and for continuum problems of non-convex type which Pincus seemed to

have in mind.

The basic results are that the limit vector in Pincus-type formulas is a convex combination

of the global minimization vectors. The convex proportions depend on the relative function

shapes and volumes in the immediate neighborhoods of the individual global minima.

In the following we present an extended Pincus theorem and an extended discrete

Pincus theorem as two extremes of a possible general Pincus formula which would involve a sum
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of multiple integrals of different dimensions corresponding to different parts of the domain S of

the function F whose global optima are sought. We proceed to examine for these implications of

facts Ike the values of the function F are only known as one performs sample jumps on Markov

chains whose transition probabirities are determined only as one makes sample jumps from a pre-

selected irreducible symmetric aperiodic Markov transition matrix.

Such facts raise considerable concern about what it is that a simulated annealing process

may converge to instead of a global optimum of the original problem. Indeed, our analytic

expressions give additional support to the lack of assurance simulated annealers have in their

results as exemplified by "re-annealing" and "annealing schedule" change devices introduced in

the hope of obtaining "better" optima.

Extended Pincus Theorems

In [1] M. Pincus gave a closed form expression for the unique global minimum vector of a

continuous function F(x) over a compact set S in En as the limit of a sequence of expected

value vectors. We here extend this result to the case of finite global minima for two extreme

cases, one in which S is a discrete set of points. The proof arguments involve breaking the

integrals or sums involved into two parts, one in the neighborhood of a global optimum and the

other negligible for large parameter values.

Theorem 1:

Let (1) F(x) be continuous over a compact set S c En

(2) The global minima za, a - 1, ..., k of F(x) are contained in disjoint

closures Oa of open sets O, with Ou c S



Then there exists X , 0 < r--oaand0<, 0 3. p 1
U-,1

such that

L Jexp(-XrF(x)) dx/ exp(2F(x)) dx z P i 1,2...,.

Proof: S may be divided into compact sets S. containing O. and disjoint except for boundaries

of n-dimensional volume zero. Thus

s s- 5 and is- L

for integrals with n-dimensional volume measure.

Let G (x, X) - exp (-X F(x) ). Then

(1) Jf xG(xX)d/f G(x,X)dx=, Jxi G(x ) dx/ G (x, X) dx:

Consider Sa in which za is the gW global minimum.

Now

(2) I xiG(xt)dx- Z IS G(xX)dx+ J(x-zc)G(x,) dx

and

(2.1) (x,) dx]- xi G(x, X) dx= z g(a, X) + G (x, ) dx] ( -z)G(xX) dx

where A 1( LG(x, x/) fG(xX) dx

Evidently 0 < g (aX) and X a,x) =1 forall .
al



We break the integration over ScL in the last term into two parts which go to zero as the

first part volume does and as X -+ - in the second part.

Let

I x: I x -zj < e for e > 0, e< c/ 3 where P is the minimum distance between

the zct of S.

Then

so that

On Sa - N, which is compact again, the minimum of the continuous function

F(x)-F(za) O is,say, 8>0, since za is the onlyglbalrminrrujm of F(x) in Sa.

Let M - max Ix-zaIl forx eS.. Then, multiplying numerator and denominator by

exp (X F(z)),

(4) [fJG(x, X) dx}' 1 I ) -z G (x, X) dx 5 [f [H (xX) dx]- 1J H (x, X) dx

where H(x,X) - exp(XF(o)) G(x, X) - exp[-;LF(x)- F(z-)]

(4.1) :5 exp(-X8) on S.-4.
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so that

(4.2) fIS= . H (x, ).) dx <s exp (-.%,8) V (S.)

where V(S a) is the volume of So.

Since F(x) - F(za) is continuous, for x e = (x Ix-z < 11) ,

F(x) - F(zG) < 8 / 2. Hence

(4.3) JsH(x, A) dx > Ji H(x, X) dx > V(Nq)exp(- 8/2)

and (4) is bounded above by

(4.4) M V(S.) exp (-M/2)/ V(N;)

Thus

(5) [JG(x, %) dxl xi G(x, X) dx - zq j.(c < e+exp(-X8/2) M V(S=) IV(N)

which goes to zero as E -> 0 and X --> .o

Since 0 <. (% X) and I.A (0, X) = 1 forall X , everysequence {})oo containsa

subsequence for which g± ( cx,)Z converges to some p (cx) , 0 a p (cx) , p.(cx) = 1.

Note that p. (a, X) and p (c) are independent of the coordinate xi

Therefore, going back to (1), every non-negative sequence - contains (b.a.o.n.) a

subsequence { , I such that
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(6) Lj xiG(xl)dx/G(X, ) = a )1

Q.E.D.

In Pincus' formula, k - 1, i± (a, I) 1 , so that no subsequence is necessary.

The restriction to a subsequence of )X - oo can be removed sometimes by additional

special conditions on F(x) and the properties of S in the neighborhood of the za, conditions

which may be fulfilled in some optimization applications but not ones with F(x) non-convex at a Za.

Some Examples

First, however, to give some feeling for the convergence situation, we consider several

one-dimensional explicitly integrable examples as in Figure 1:

FIGURE 1

F (x) F (x)

5 10 D. E

4 A A 8 C,E

3 6
2 B 4D

1 2 E

0 , x 0

0123456789 1-8x
Conergnce A 6 75 Con0 1 2 3 4 5 6 7 8 9

Convergence: A, B - 5 Convergence: C, D - 8.77, E - 1- 8
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A: F(x)=x, 1 <x<5
1 O-x, 5: x5 9

Here S1 ={x:1 x:5}and S2 ={x:5<x:1o)

(A.1) fIx G (x, X) dx= [e + O0 (e - &)] ; IS, G (x, X) dx-- [e + O 0 )

verifying z1 = 1.

(A. 2) fS2x G (x,))dx= - [9e7"+O0(e-5')] ;S G~ (x, X) dx ):1 [e + 0-6j

verifying z2 = 9.

Clearly, for large ,, p(l, X) = 1/2 + 0(e - 4 A) and g(2, X) = 1/2 + 0(e - 4 ')

Thus, as X -- 00, convergence of (1) is to

(A.3) 1(1) + 1 (9) = 5, the global maximum of F(x)!
2 2

Next consider

(B.1) F(x)= x, 1-x7,2
(1 6-x) /7, 2 5x 59

Then g(, X) = 9/16 + 0(e-2 ) ; g1(2, X) = 7/16 + 0(6-2).) and convergence is to

(B.2) (9/16).1 + (7/16).9 w 5

The value here is 11/7, over 50% higher than the minimum of 1. Note that the difference

in shape and behavior of F(x) in S1 andS2 has made gi.(1)sj±(2).



(C) F(x) =4x, 1 :s x < 2 8
13-x, 3 <x <9

Here S = {x :1 < x x 2), S2 = {x : 3:< x < 9). S is not convex and not connected.

In obvious abbreviation,

(C1 [ x Gdx ,,(4 X' [e-4'+ 0 (e"sx)] J S, Gdx=- (4 X) -1 [e- 4x + 0 (e-s)]

veifying z1 = 1.

(C.2) f2x G
dx  9;C' e -  ; Gd](4= (CX)-1 [e-4X +0(e-1 (W)]

verifying z2 . 9.

For large X, g(l, )) . 1/37 + O(e- 4)-) , .(2, X) = 36/37 + O(e- 6 ).) and convergence is to

1. (1/37) + 9 - (36/37) = 8.77

The sharper rate of rise of F(x) and much smaller volume in S1 re S2 has nearly eliminated

the S1 contribution.

D: Extending F(x) through 2:< x < 3 by F(x) - 4 + 2x so that F is continuous and S convex

and connected, the contribution as X --+ co is 0 (1 e-1 O1) in I x G dx and is 0 (X-1 e-SX) in

ISG dx so that convergence is to the same values as in example C.

E: Extend F(x) to F(x) , f4x, 1-8: x < 2 to have a unique global minimum at x = 1-8, with
4 + 2x,2 < x <3
13-x, 3< x < 9

S1 -{x: 1-6<x:53} and S2 - (x: 3Sx<9) and value 4-48 for0< 8 very small.
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Then

(E.1) IS xGdx Is Gdx =[(1-8) + 0(e-4(1-8)X]/ [I + 4e'X + 0(e'8L)]

and

(E.2) S xGdx /sGd=36e48X [14e48]

Thus for small 8, it is only for large . that the unique and very little smaller global minimum is

picked up e.g. that (E.2) -- 0.

Special and Discrete Pincus Theorem Extensions

Under special conditions on F(x) and S, asymptotic expansions for the integrals of

xi G(x, X) and G (x, X) for large . may be obtained by Laplace's method, see pages 36-37 of

Erdelyi's monograph "Asymptotic Expansions" [71 and by Hsu's extensions to multiple integrals

[8], [9]. We use only the G (x,.) = exp [ -X F(x) I cases, since it is only these in which we might

need to consider a subsequence of X tending to infinity. Thus, for us, Hsu's results, pages 629-

30 of [9] for unique global minimum on the boundary of Sa or page 626 of [8] for interior global

minimu.m of F (x) in S,, would give us

L fs a exp[ -X F(x) ] dx = exp[ -F (z ]((2)n/I n [ -F (z ]} 2

). -+ 00

where Hn [F(zcL) I is the n-dimensional Hessian of F at za. The set Sa is supposed to contain

a closed finitely connected domain with continuously turning targent hyperplane which includes

za. The function of F is to be of class C2 (continuous with continuous first and second partial

derivatives ). The Hessian required to be positive implies that F(x) is strictly convex at za , a most
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restrictive condition. Thus, Pincus' result is much stronger than the asymptotic Laplace-Hsu

results.

Discrete Case

Consider a bounded discrete set of points D Q En and a function F(x) defined on D

and with global minimum there at zQ, a 1,.. ., k.

Theorem 2: If

(1) F(x) has a finite number k of global minima in D at za, C 1, ..... k.

(2) IDI <VD and for some Ao > 0,

I exp [-o F(x)] < oc

xe D

(3) inf rF(x)- F(z= > 0
DY U(z0)

Then

L )Q exp [-), F(x)j exp[A F(x)]- k- W Ye,i=1 .. ,. n
X +cc== xeDm xeD awl

Proof: Let G(x, X) - exp[A F(zQ)], H(x, X) a exp[-XF(x)- F(za)]

Z U{z*) and D\Z= ai.

Then

FD q G (xD) _ (x , 1) .(x, D / H (x,
xe D xe D xe D xe D



(7.1xi H (x, / k+ x Hlx,
L xeD' Xe D'

Let A,= X + X1, X1 2 0. Then

(7.2 ) H(x,X) - H(x, L) exp[-LI F(x)- F(z)] exp (-X1 8) H(x, X)

So

(8 ) H (x,A)< exp(-)L ; Z H(x, o)
xe D' XED'

(8.1) 1 xi H (x, A)<: VD H H(x, 4) <g VD exp (-l1 b) H H(x, 4)

xe D' xe D' xe D'

(8.2) L H (x, = L 7 qHQCX=0
X-+00 xeD' x D

and from ( 7.1 ),

k
(9 xi G(x, A) / . G(x, X) =k' zf, i= 1,...,n.

/ xe D xe D CL=1

Q.E.D.

From Optimization to Simulated Annealing

Pincus, understanding that his 1968 results [1] could not be made operational without a

means of approximately evaluating integrals over irregular sets and in multi-dimensional spaces,

provided in 1970 [2] a method of computation. Since F(x) was continuous on a compact set S,

the Riemann integrals could be approximated by summing the values of the integrands at a finite

grid of points in S each multiplied by the volume of its grid cell. His key was the World War II work

of von Neumann, Ulam, Everett and Metropolis [3] as partly summarized but not referenced in
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Chapter 9 of the excellent 1964 Methuen monograph of Hammersley and Handscomb, Monte

Carlo Methogds [101.

An incisively cleat rendition of the backgrounds and basic idea of associating an ergodic

irreducible (finite state) Ma'kov chain satisfying the strong law of large numbers so that a sample

sequence of Markov transitions could give with probability one an expected value which would be

a desired Integral can be found in "The Monte Carlo Method" by N. Metropolis and N. Ulam in the

1949 Journal of the American Statistical Association, pp. 335-341, [13]. This paper which

references other von Neumann, Everett, Ulam work makes clear (page 338) that the method had

been and was being applied to many problems involving (partially) stochastic flows governed by

integro-differential equations, not just to Boltzmann equilibria in "statistical mechanics."

Ignorance or unavailability of these references likely led to the current misapprehension of history

as in the preface to the 1987 book [11] of van Laarhoven and Aarts Simulated Annealing: Thego

and. Apaliaions, D. Reidel Publishing Co., Dordrecht, Holland.

Pincus' work dealt with optimization problems with a unique optimum. His expressions for

this optimum as a limit of expected value expressions led him to make the Monte Carlo Markov

chain connection. Our results for non-unique global optima, the usual case, provides insight into

convergence properties of associated Markov sample runs designated "simulated annealing,"

free of metaphysical non-mathematical ideas of melting, cooling and freezing.

Markov Chain Computation and Simulated Annealing

Pincus in [2], borrowing from [31, associated with each point xk of S In the approximating

Rieann integral sums

N N
(10.1) 1Y x, exp [-.F(xk)] and I exp [-XF(xk)]

k-i k-1

The N-vector of coordinates (for all X > 0)



(10.2) I p [ -X Fp - 1, ...[ xN]3
k

where Fk F (xk) and X, is omitted where clear from context. The j > 0 are to be the (unique)

"invariant" or "stationary" distribution of an (ergodic) irreducible, aperiodic Markov process with

N "states" (or "configurations" in simulated annealing "SA" nomenclature) and matrix (Pij), i, j=

1, ..., N. Starting with an arbitrary symmetric, Irreducible, apeodic Markov matrix Pij , Pj is

determined by

P ij l"[j /1 i  , if 1j /]'i < 1, i1 j

FIi i i P

(11) ji= PI ,ifrj/ i 2t 1,i*j

Pui+ I Pi("Hj/fi), imftj,'r,j:rij/i <1)

je J"

The Pi are designated Gij ("generation probabilities) in SA literature which has

Pij - Gi jAij where Aij is an "acceptance" probablilty matrix, see [11], page 13. The SA literature

also uses -1 - c, or T, so that as X -+ - , c, or T (termperature) -+ 0.

The Markov (sample) chains are defined as follows:

If currently in "state" i, use the Pij (Gij) probabilities to pick state j. Calculate f'[ / ri . If

z1 i 1 , accept j as the new state. f q / q < 1, then with probabilry lj / q1 accept j and

with 1 - rj / 1"i go back to the orginal state i. This procedure corresponds to sample chains

using Pij. Operationally, r'[ Ilj >1 means Fj :; F1; I'/I< 1 means Fj > Fi. Acceptance

of j is (Metropolis criteria) by comparing exp [- X F j] with a random number R drawn from the

uniform distribution on (0,1]. Accept if exp [- X F j I > R, otherwise stay at i.
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How long a Markov chain to use for each X. value Is not well specified in SA, see [11]

pages 59-61, but the idea Is (page 10) "until equilibrium is approached sufficiently closely",

whatever "equilibrium", undefined mathematically, may mean. Supposing it means getting close

to optimum, this is usually impossible to estimate or else because of horrendous to do

computation time. Pincus in [2] gives a rough Chebychev inequality bound re convegence to the

expected value for the case of a unique global minimum. A similar bound is mentioned [11

page 56 without reference to Pincus and for, presumably, the general multiple optima situation

which Hajek [5] and others explicitly mention. All [11, 12] seem to have the idea that one has

"convergence" to a single state i.e. that a unique minimum state for each X-1 ("temperature")

employed is achieved in computation which is stopped either when the minimum state repeats

tself often or by choosing the state reached when a fixed number of transitions is reached. Proof

that such repetition can "unreasonably" often occur (even for simple heads-tails coin tossing) may

be found in Feller [13] Chapter III, especially pages 77-86, re the Arc Sine law and Probabilities of

Long Leads.

Example Computations

Nearly all SA computation (and much theory) has employed Pij matrices with equal P1j's

in a band around the main diagonal e.g., uniform non-zero probabilities between "neighboring"

states, zero between non-neighboring states but with positive probability of reaching any one

state from any other in possibly multiple steps (the 'Irreducibility" property).

Abstracting 3 states, 1, 2, 3, corresponding to x - 1,5, 9 from example A with F1= 1,

F2= 5, .F3= 1, using the uniform ( Pij ) matrix of elements Pij - 1/3, choosing X.- 0.5

(temperature - 2) and making a sample run of 96 transitions starting with state 1, we reached state

one 47 times, state two 7 times, state three 42 times. No sojourn In a state lasted more than 4

times; every state was a global minimum starting with transition 66 whereupon the transitions were

flip-flops between the global minimum states 1 and 3 rather than an "equilibrium" at either. The
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relative frequencies of 0.4948, 0.0722, 0.433 for respectively states one, two, three correspond

to the theoretical values of 1/2, 0, 1/2 from our "discrete" Pincus Theorem.

We next consider a class of traveing salesmen problems with 2n cities having

obvious global optimal tours of minimum distance traveled. The city locations are at points

(1, 1),.... (1, n), (n, 0),.. ., (1, 0) in the plane with "rectangular" (e.g. "1'l distance between

pairs of cities. We label the tours (or configurations) as cyclic permutations (1, .... 2n) where

(1, 1), ... (1, n), respectivety correspond to cities 1 .... ,n and (n, 0) ..... (1,0) correspond to

n +1, ... ,2n. Clearly the global optimal tours are those starting at any city and going clockwise

(or counter clockwise) around a "rubberband" encircling the cities. The transitions are an

exchange of a pair of cities in a permutation. Thus

(a) There are 4n global optimal tours

(b) (2n)l tours, with many local rnirma

(c) The a pdod probability of finding a global optimum is quite small, 0 (4n / (2n)!

(d) The average tour length is 0( n2)

(e) The optimal tour length is 2n < c 0 (n2).

Starting with 2n - 500, the Kirkpatrick et al "Metropolis" algorithm [ 4 1, the tour (1,... ,

2n, 2n-1,. .. , n + 1) , we made a number of runs on a SEQUENT computer (roughly equivalent to

a VAX 780). We present results for some "high" temperature runs using 1000 transitions and

"low" temperature runs using 3000 transitions - - - 1000 transitions took 45 CPU minutes on the

computer.

Notice that at high temperatures the "equilibrium" tends toward the average case; at low

temperatures it gets stuck in local minima.
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Simulated Annealing Runs

(500 Cities, 1,000 Transitions per run, starting tour cost 998, optimal cost 500.)

Temperature ( r 1) Cost Last Tour Cost Best Tour Found

10.0000 4494 998

(Case 1) 1.0000 3284 998

0.1000 3260 998

(3,000 transitions per run, starting tour cost 998)

1.0000 1146 998

0.1000 1014 998

(Case 1) 0.5000 1016 998

0.1000 998 998

1.0000 1146 998

(Case 2) 0.1000 1014 998

0.0100 1014 998

1.0000 1150 998

(Case 3) 0.1000 1040 998

0.0100 1040 998

1.0000 1128 998

(Case 4) 0.5000 1024 998

0.1000 1010 998

0.0100 1010 998

1.0000 1206 998

(Case 5) 0.1000 1026 998

0.0100 1026 998
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Individual Sample Runs Versus Ensemble Properties

Simulated annealing analogies to physical or thermal equilibrium statistical mechanics

confuse between average properties of nsmbla. properties of averaged behavior of many

individual particles, with that of individual particle behavior. The vast difference mathematically

between ensemble properties and behavior in individual sample runs is brought out in Feller [13]

Chapter III, "Coin Tossing and Random Walks." Without such behavior there would likely be no

gamblers nor attempts at gambling systems.

In our first SA example we chose only three states and 96 transitions in order to ensure

that the ergodicity property of the sample Markov chain would take over. As mentioned, the latter

two-thirds of the transitions involved flip flops between the two global minima states (with no
visitation of the poorer state). Is this equilibrium, the state at which to terminate the sample run, as

u fe in von Laarhoven and Aarts [11] especially page 10?

In the second example, starting with a state close to optimum in the sense that only 2

particular interchanges would suffice to obtain an optimum, not only did we fall to improve from this

state but instead got substantially worse results for the higher (melting) temperatures. Of course,

we only (1) did 1,000 and 3,000 transitions for a problem in which 5001 transitions are a priori

possible. But 45 minutes (CPU time) per 1,000 transitions were required on a mainframe

computer. And, "equilibrium" seemed to be attained on these runs.

Many combinatodal optimization problems can be stated in continuum form and solved,at

worst approximately, by continuum methods. For example, integer programming problems with

network constraints and integer data can be solved exactly with extreme point algorithms which

are also two orders of magnitude more efficient in time and size accomodated than general

purpose LP algorithms. Chdstophides algorithm for the traveling salesman problem based on

network structure can guarantee no worse than 150% over optimal cost. The simulated annealing

procedures can guarantee nothing.

Another point exhibited by our Pincus examples is that the convergence of the

integral formulations may be to a different convex combination of the global minima from that

of the approximating Riemann sums. The latter, via our Discrete Case Theorem, is always to
the simple average of the global minima. Thus the interchange of limit operations, X -+ cc

and sum -. integral can make large differences in the fluctuation of states visited (and how often)



18

within a sample run. This point applies whether or not the optimum is unique since approximate

non-global optima may have equal values. Sample runs often converge, see Hammersley and

Handscomb [10], to local non-global optima (with flip flops) since transitions to better states may

be possible only through (very unlikely) transitions to states poorer than the local optima.

Thus simulated annealing computations cannot be trusted to deliver global optima.
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